# Ratio & Proportion

# If two items of A is equal to three times of B and also equal to four times of C, then A : B : C is :

If two items of A is equal to three times of B and also equal to four times of C, then A : B : C is : [A]2 : 3 : 5 [B]3 : 4 : 2 [C]4 : 6 : 3 [D]6 : 4 : 3 Show Answer 6 : 4 : 3 ..

# If A : B = 2 : 3 and B : C = 4 : 5, then A : B : C is :

If A : B = 2 : 3 and B : C = 4 : 5, then A : B : C is : [A]2 : 3 : 5 [B]5 : 4 : 6 [C]6 : 4 : 5 [D]8 : 12 : 15 Show Answer 8 : 12 : 15 $latex A : B ..

# If a : b : c = 7 : 3 : 5, then (a + b + c) : (2a + b – c) is equal to :

If a : b : c = 7 : 3 : 5, then (a + b + c) : (2a + b – c) is equal to : [A]1 : 2 [B]2 : 3 [C]3 : 4 [D]5 : 4 Show Answer 5 : 4 $latex a : b : c = 7 : 3 ..

# The ratio of A to B is 4 : 5 and that of B to C is 2 : 3. If A equals 800, C equals :

The ratio of A to B is 4 : 5 and that of B to C is 2 : 3. If A equals 800, C equals : [A]1000 [B]1200 [C]1500 [D]2000 Show Answer 1500 $latex A : B = 4 : 5$ $latex B : C = 2 : 3$ $latex \therefore A : B ..

# Aptitude Question ID : 94354

If a : b = c : d, then $latex \frac{ma+nc}{mb+nd}&s=1$ is not equal to : [A]$latex \frac{a}{b}&s=1$ [B]$latex \frac{c}{d}&s=1$ [C]$latex \frac{c-a}{b-d}&s=1$ [D]$latex \frac{a+c}{b+d}&s=1$ Show Answer $latex \mathbf{\frac{a+c}{b+d}}&s=1$ $latex a : b = c : d$ $latex => \frac{a}{b} = \frac{c}{d} = \frac{ma}{mb} = \frac{nc}{nd}&s=1$ $latex => \frac{a+c}{b+d} = \frac{ma+nc}{mb+nd}&s=1$ Hence option [D] is correct ..

# If a : b : c = 2 : 3 : 4 and 2a – 3b + 4c = 33, then the value of c is :

If a : b : c = 2 : 3 : 4 and 2a – 3b + 4c = 33, then the value of c is : [A]$latex 6$ [B]$latex 9$ [C]$latex 12$ [D]$latex \frac{66}{7}&s=1$ Show Answer $latex \mathbf{12}$ $latex a : b : c = 2 : 3 : 4$ $latex \therefore \frac{a}{2} = ..