If a : b = c : d = e : f = 1 : 2, then (pa + qc + re) : (pb + qd + rf) is equal to :

If a : b = c : d = e : f = 1 : 2, then (pa + qc + re) : (pb + qd + rf) is equal to :
[A](p+q) : r
[B]1 : 2
[C]2 : 3
[D]p : (q+r)

1 : 2
\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{1}{2}
=> \frac{pa}{pb} = \frac{qc}{qd} = \frac{re}{rf} = \frac{1}{2}
=> \frac{pa+qc+re}{pb+qd+rf} = \frac{1}{2} or 1:2
Hence option [B] is the right answer.

Comments